WHAT IS CLAIMED: 5 10 - 1. A process comprising the step of reacting a macrocyclic compound characterized by at least two nucleophilic moieties with a bridging component optionally in the presence of catalyst thereby achieving a bridged macrocyclic product. - 2. The process of claim 1, wherein the macrocyclic compound is a macrolide antibiotic. - 3. The process of claim 1, wherein the macrocyclic compound is an erythromycin derivative. - 4. The process of claim 3, wherein the erythromycin derivative is azithromycin, desmethyl azithromycin, roxithromycin, clarithromycin, telithromycin, or cethromycin. - 5. The process of claim 1, wherein the macrocyclic compound is selected from: wherein 5 10 15 20 D is selected from $-NHCH_2$ -, $-NHCHR_1$ -, $-NHCR_3R_4$ -, $-NR_1CH_2$ -, -NHC(O)-, -NHC(S)-, or $-NR_1C(S)$ -; Each R₁ is independently selected from hydrogen, deuterium, a substituted or unsubstituted, saturated or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted aromatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, saturated or unsaturated heterocyclic group; R₃ and R₄ is independently selected from the group consisting of hydrogen, acyl, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, saturated or unsaturated heterocyclic group; or can be taken together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic or heteroaromatic ring; L is selected from hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsubstituted alicyclic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, or a substituted or unsubstituted heterocyclic group; one of U or V is hydrogen and the other is independently selected from the group or other consisting of: R_1 , OR_1 , $OC(O)R_1$, $OC(O)NR_3R_4$, $S(O)_nR_1$, carbohydrate or sugar moiety; or U and V, taken together with the carbon atom to which they are attached, are C=O; or UV and R_eR_f , taken together with the carbon atoms to which they are attached, are – $C(R_1)$ =CH-; one of J or G is hydrogen and the other is selected from: R₁, OR₁, or NR₃R₄; or J and G, taken together with the carbon atom to which they are attached, are selected from: C=O, C=NR₁, C=NOR₁, C=NO(CH₂)_mR₁, C=NNHR₁, C=NNHCOR₁, C=NNHCONR₃R₄, C=NNHS(O)_nR₁, or C=N-N=CHR₁; R_a , R_b , R_c , and R_d are independently selected from $-R_1$, $-OR_1$, $-S(O)_nR_1$, $-C(O)OR_1$, $-OC(O)R_1$, $-OC(O)OR_1$, $-C(O)NH-R_1$, $-NHC(O)-R_1$, $-N(R_3)(R_4)$, $-NHC(O)-OR_1$, $-NHC(O)NH-R_1$, or $-OC(O)NH-R_1$; or R_a and R_b, R_a and R_c, R_a and R_d, R_b and R_c, R_b and R_d, or R_c and R_d, taken together with the carbon atom or atoms to which they are attached, are selected from substituted or unsubstituted alicyclic or substituted or unsubstituted heterocyclic; one of R_e and R_f is selected from hydrogen or methyl, and the other is independently selected from halogen, deuterium, or R_1 . R_h is hydroxy; 10 15 20 25 R_g is selected from hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsaturated alicyclic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heterocyclic group; or R_g and R_h , taken together with the carbon atom to which they are attached, are selected from an epoxide, a carbonyl, a substituted or unsubstituted olefin, a substituted or unsubstituted alicyclic, a substituted or unsubstituted heterocyclic; W is NR₃R₄; one of X and Y is hydrogen, substituted or unsubstituted aliphatic, and the other is independently selected from: hydroxy, -SH, -NH₂, or -NR₁H; or X and Y, taken together with the carbon atom to which they are attached, are selected from: C=O, C=NR₁, C=NOR₁, C=NO(CH₂)_mR₁, C=NNHR₁, C=NNHCOR₁, C=NNHCONR₃R₄, C=NNHS(O)_nR₁, or C=N-N=CHR₁; R_p is selected from hydrogen, acyl, silane, or a hydroxy protecting group; 30 X_H is selected from hydrogen or halogen; m is an integer; and n is 0, 1, or 2. ٠ . 10 - 6. The process of claim 4, wherein, for the macrocylic compound, L is ethyl. - 7. The process of claim 4, wherein, for the macrocylic compound, one of X and Y is hydrogen and the other is selected from hydroxy or amino. - 8. The process of claim 4, wherein, for the macrocylic compound, X and Y, taken together with the carbon atom to which they are attached, are selected from C=O, C=NH, C=N-OH, or C=N-NH₂; - 9. The process of claim 4, wherein, for the macrocylic compound, R_g is methyl. - 10. The process of claim 4, wherein, for the macrocylic compound, R_e is hydrogen and R_f is selected from methyl, allyl, or propargyl. - 11. The process of claim 4, wherein, for the macrocyclic compound, one of U and V is hydrogen and the other is selected from -OH or -O-cladinose. - 12. The process of claim 4, wherein, for the macrocylic compound, U and V, taken together with the carbon atom to which they are attached, are C=O. - 13. A bridged macrocyclic product produced by the process of claim 1.